International Linear Collider

Considerations for Cost Estimating Magnet Power Systems

Paul Bellomo

DC Magnet Power System Block Diagram

Magnet

DC power cables

Transductors

Power supply

PS controller

Rack and accessories

Global control

Water cooling

AC power interface

DC Magnet Information

- Maximum, typical, minimum currents, unipolar or bipolar
- Voltage or resistance (0.1 $\Omega \le V/I \le 2 \Omega$)
- Series connected (for lower cost) or individual (for insertion or optics)
- Stability short term (ppm RMS vs. time) and long term (ppm / °C)
- Protection (none, thermal or flow switch, etc), individual / group turnoff
- Special protection and terminations for superconducting magnets
- Mutual coupling with other coils or magnets
- Inductance (for tuning, v=di / dt)

Pulsed Magnet Information

- Maximum, typical, minimum currents, unipolar or bipolar
- Impedance and inductance
- Pulse shape (rise and fall times, width) and flattop requirements
- Pulse repetition rate (establishes average power)
- Timing requirements
- Pulse-to-pulse time (jitter) and amplitude stability
- Protection (none, thermal switch, flow switch, etc)
- Special terminations

Cables, Raceways and Cable Trays

- Ampacity per NEC or other standard
- Allowable losses ($5\% \le P_c/P_m \le 50\%$) or other heat loading constraints

$$B = \mu \, N \, I \, / \, L$$
 and $P = I^2 \, R = \rho \, L \, / \pi \, D^2$

Linear reductions in I yield second order reductions in power

- Space for raceways / trays, raceway and tray fill per NEC or other AHJ
- Conventional or water cooled
- Seismic requirements, loading and supports per NEMA VE-1
- Low smoke non-Halogen
- Voltage class or rating
- Shielded, paired or twisted to minimize radiated EMI
- Impedance to match load

DC System Zero Flux Current Transductors

Hitec (in Europe)

Danfysik Model 866 0 - ± 600 A 0.3 ppm / ° C DC - 100 kHz 10 kA / mS

Danfysik Model 860 0-±1000A, to ±3000A 0.3 ppm / ° C DC – 100 kHz 10 kA / mS

Power Output Vs Mounting / Input Voltage / Cooling Considerations

	Input AC (V)				Cabinet		Cooling	
Power Output	1 φ 120	3 φ 208	3 <i>φ</i> 480	3 φ 4160	RM	FS	AC	WC
< 2 kW	X				X		X	
2 kW → 5 kW		X			X		X	
> 5 kW → 40 kW			X		X		X	
> 40 kW → 100 kW			X			X	X	
> 100 kW → 1 MW			X			X	X	X
> 1 MW				X		X	X	X

RM = Rack mounted AC = Air-cooled FS = Freestanding

WC = Water-cooled

Other Power Supply Considerations

- Unipolar, bipolar or four-quadrant output
- Redundant to increase availability, modular to reduce number of different types. Some success with ATF2 redundant modular demonstration system
- Personal protection system (PPS) requirement
- Magnet thermal switch interface
- Ambient temperature range
- Allowable heat into ambient

DC and Pulsed Power Supply Controller and Global Control

DC - stability

- Redundant or single
- Communication protocol
- Analog or digital communication with power supply
- Embedded or separate

Pulsed – interlock protection

Programmable logic controller (PLC) based

Racks and Freestanding Power Supplies

- Seismic criteria
- Size (H * W * D) and weight limitations
- Cooling (air or water), air conditioning
- Other environmental considerations

AC Power Interface - Last Slide

- Voltage class
- System impedance
- Fault current levels
- Minimize arc flash hazard (recessed breakers, extender handles, remote control)